
segunda-feira, 7 de junho de 2010
Resolução de equações
Uma equação é fogo para se resolver
é igualdade difícil e de grande porte
é necessário saber todas as regras
e ter até uma boa dose de sorte.
A primeira coisa a ter em conta
quando se olha uma equação
é ver se tem parênteses,
é que umas têm outras não.
Se tiver, é por ai que tudo deve começar.
Sinal "+" antes: fica tudo igual.
Mas tudo o que vem a seguir se deve trocar
se antes do parênteses o "-" for o sinal.
A seguir...alerta com os denominadores!
Todos têm que ter o mesmo para se poder avançar.
Os sinais negativos antes de fracções
são degraus onde podem tropeçar.
É preciso não esquecer nenhum sinal
e estar atento ao coeficiente maroto
e se um termo não interessa de um lado
muda-se o sinal e passa-se para o outro.
Quando a incógnita estiver sozinha
podemos então dar a tarefa por finda. E então,
sem nunca esquecer o que foi feito,
escreve-se o conjunto solução.
Autor: Desconhecido
Uma equação é fogo para se resolver
é igualdade difícil e de grande porte
é necessário saber todas as regras
e ter até uma boa dose de sorte.
A primeira coisa a ter em conta
quando se olha uma equação
é ver se tem parênteses,
é que umas têm outras não.
Se tiver, é por ai que tudo deve começar.
Sinal "+" antes: fica tudo igual.
Mas tudo o que vem a seguir se deve trocar
se antes do parênteses o "-" for o sinal.
A seguir...alerta com os denominadores!
Todos têm que ter o mesmo para se poder avançar.
Os sinais negativos antes de fracções
são degraus onde podem tropeçar.
É preciso não esquecer nenhum sinal
e estar atento ao coeficiente maroto
e se um termo não interessa de um lado
muda-se o sinal e passa-se para o outro.
Quando a incógnita estiver sozinha
podemos então dar a tarefa por finda. E então,
sem nunca esquecer o que foi feito,
escreve-se o conjunto solução.
Autor: Desconhecido
segunda-feira, 31 de maio de 2010
domingo, 30 de maio de 2010
EQUAÇÕES DO 2º GRAU
Equação do 2º Grau
Fórmula de Bhaskara
Uma equação é uma expressão matemática que possui em sua composição incógnitas, coeficientes, expoentes e um sinal de igualdade. As equações são caracterizadas de acordo com o maior expoente de uma das incógnitas. Veja:
2x + 1 = 0, o expoente da incógnita x é igual a 1. Dessa forma, essa equação é classificada como do 1º grau.
2x² + 2x + 6 = 0, temos duas incógnitas x nesta equação, onde uma delas possui o maior expoente, determinado por 2. Essa equação é classificada como do 2º grau.
x³ – x² + 2x – 4 = 0, nesse caso temos três incógnitas x, onde o maior expoente igual a 3 determina que a equação é classificada como do 3º grau.
Cada modelo de equação possui uma forma de resolução. Trabalharemos a forma de resolução de uma equação do 2º grau, utilizando o método de Bhaskara. Determinar a solução de uma equação é o mesmo que descobrir suas raízes, isto é, o valor ou os valores que satisfazem a equação. Por exemplo, as raízes da equação do 2º grau x² – 10x + 24 = 0 são x = 4 ou x = 6, pois:
Substituindo x = 4 na equação, temos:
x² – 10x + 24 = 0
4² – 10 * 4 + 24 = 0
16 – 40 + 24 = 0
–24 + 24 = 0
0 = 0 (verdadeiro)
Substituindo x = 6 na equação, temos:
x² – 10x + 24 = 0
6² – 10 * 6 + 24 = 0
36 – 60 + 24 = 0
– 24 + 24 = 0
0 = 0 (verdadeiro)
Podemos verificar que os dois valores satisfazem a equação. Mas como determinarmos os valores que tornem a equação uma sentença verdadeira? É sobre essa forma de determinar os valores desconhecidos que abordaremos a seguir.
Vamos determinar pelo método resolutivo de Bhaskara os valores da seguinte equação do 2º grau: x² – 2x – 3 = 0.
Uma equação do 2º grau possui a seguinte lei de formação ax² + bx + c = 0, onde a, b e c são os coeficientes da equação. Portanto, os coeficientes da equação x² – 2x – 3 = 0 são a = 1, b = –2 e c = –3.
Na fórmula de Bhaskara utilizaremos somente os coeficientes. Veja:
1º passo: determinar o valor do discriminante ou delta (∆)
∆ = b² – 4 * a * c
∆ = (–2)² – 4 * 1 * (–3)
∆ = 4 + 12
∆ = 16
2º passo
Os resultados são x’ = 3 e x” = –1.
Exemplo 2
Determinar a solução da seguinte equação do 2º grau: x² + 8x + 16 = 0.
Os coeficientes são:
a = 1
b = 8
c = 16
∆ = b² – 4 * a * c
∆ = 8² – 4 * 1 * 16
∆ = 64 – 64
∆ = 0
No exemplo 2 devemos observar que o valor do discriminante é igual a zero. Nesses casos a equação possuirá somente uma solução ou raiz única.
Exemplo 3
Calcule o conjunto solução da equação 10x² + 6x + 10 = 0, considerada de 2º grau.
∆ = b² – 4 * a * c
∆ = 6² – 4 * 10 * 10
∆ = 36 – 400
∆ = –364
Nas resoluções em que o valor do discriminante é igual ou menor que zero, isto é, o número seja negativo, a equação não possui raízes reais.
Fórmula de Bhaskara
Uma equação é uma expressão matemática que possui em sua composição incógnitas, coeficientes, expoentes e um sinal de igualdade. As equações são caracterizadas de acordo com o maior expoente de uma das incógnitas. Veja:
2x + 1 = 0, o expoente da incógnita x é igual a 1. Dessa forma, essa equação é classificada como do 1º grau.
2x² + 2x + 6 = 0, temos duas incógnitas x nesta equação, onde uma delas possui o maior expoente, determinado por 2. Essa equação é classificada como do 2º grau.
x³ – x² + 2x – 4 = 0, nesse caso temos três incógnitas x, onde o maior expoente igual a 3 determina que a equação é classificada como do 3º grau.
Cada modelo de equação possui uma forma de resolução. Trabalharemos a forma de resolução de uma equação do 2º grau, utilizando o método de Bhaskara. Determinar a solução de uma equação é o mesmo que descobrir suas raízes, isto é, o valor ou os valores que satisfazem a equação. Por exemplo, as raízes da equação do 2º grau x² – 10x + 24 = 0 são x = 4 ou x = 6, pois:
Substituindo x = 4 na equação, temos:
x² – 10x + 24 = 0
4² – 10 * 4 + 24 = 0
16 – 40 + 24 = 0
–24 + 24 = 0
0 = 0 (verdadeiro)
Substituindo x = 6 na equação, temos:
x² – 10x + 24 = 0
6² – 10 * 6 + 24 = 0
36 – 60 + 24 = 0
– 24 + 24 = 0
0 = 0 (verdadeiro)
Podemos verificar que os dois valores satisfazem a equação. Mas como determinarmos os valores que tornem a equação uma sentença verdadeira? É sobre essa forma de determinar os valores desconhecidos que abordaremos a seguir.
Vamos determinar pelo método resolutivo de Bhaskara os valores da seguinte equação do 2º grau: x² – 2x – 3 = 0.
Uma equação do 2º grau possui a seguinte lei de formação ax² + bx + c = 0, onde a, b e c são os coeficientes da equação. Portanto, os coeficientes da equação x² – 2x – 3 = 0 são a = 1, b = –2 e c = –3.
Na fórmula de Bhaskara utilizaremos somente os coeficientes. Veja:
1º passo: determinar o valor do discriminante ou delta (∆)
∆ = b² – 4 * a * c
∆ = (–2)² – 4 * 1 * (–3)
∆ = 4 + 12
∆ = 16
2º passo
Os resultados são x’ = 3 e x” = –1.
Exemplo 2
Determinar a solução da seguinte equação do 2º grau: x² + 8x + 16 = 0.
Os coeficientes são:
a = 1
b = 8
c = 16
∆ = b² – 4 * a * c
∆ = 8² – 4 * 1 * 16
∆ = 64 – 64
∆ = 0
No exemplo 2 devemos observar que o valor do discriminante é igual a zero. Nesses casos a equação possuirá somente uma solução ou raiz única.
Exemplo 3
Calcule o conjunto solução da equação 10x² + 6x + 10 = 0, considerada de 2º grau.
∆ = b² – 4 * a * c
∆ = 6² – 4 * 10 * 10
∆ = 36 – 400
∆ = –364
Nas resoluções em que o valor do discriminante é igual ou menor que zero, isto é, o número seja negativo, a equação não possui raízes reais.
segunda-feira, 17 de maio de 2010
História do Teorema de Pitágoras
Pitágoras de Samos
*
Pitágoras viveu no séc. VI a.C., na Grécia e pensa-se que nasceu na ilha de Samos;
*
Diz-se que Pitágoras viajou pelo Egipto e pela Babilónia vindo a fixar-se no sul da Itália (em Crotona) fundando a chamada Escola Pitagórica, onde se estudava Matemática, Filosofia, Música e outras Ciências;
*
Foi Pitágoras o primeiro a elevar a ciência dos números e da geometria à categoria das artes maiores e a estabelecer o princípio de que uma proposição científica deve ser totalmente convincente, isto é, verdadeiramente demonstrada;
*
Atribuem-se notáveis descobertas a Pitágoras, tais como o sistema de numeração decimal, tabelas de multiplicação e a demonstração do célebre teorema que leva o seu nome;
*
Há uma lenda que conta que Pitágoras ofereceu aos deuses mil bois como agradecimento, por ter descoberto a demonstração do referido teorema;
*
Os Pitagóricos tinham algumas superstições e para prevenir desgraças usavam o símbolo «pentagrama», nas portas das casas e nos sítios que queriam preservar de maus acontecimentos;
*
Este teorema indica que os gregos conseguiram estabelecer uma ligação abstracta entre os números e as figuras, o que representa um importante esforço intelectual. Também prova que tinham aprendido a demonstrar, e não apenas a persuadir, o que representa um considerável salto cognitivo.
*
Existem inúmeras demonstrações do teorema de Pitágoras. Em 1940 o matemático americano Elisha Scott Loomis compilou 367 demonstrações diferentes para o seu livro 'The Pythagorean Proposition';
*
Abaixo estão alguns estratos de demonstrações para o teorema de Pitágoras, dadas ao longo do tempo:
Grego Latino Arábico
Grego, 800 E.C. Latino, 1120 E.C. Arábico, 1250 E.C.
Françês Inglês Chinês
Francês, 1564 E.C. Inglês, 1570 E.C. Chinês, 1607 E.C.
Pitágoras de Samos
*
Pitágoras viveu no séc. VI a.C., na Grécia e pensa-se que nasceu na ilha de Samos;
*
Diz-se que Pitágoras viajou pelo Egipto e pela Babilónia vindo a fixar-se no sul da Itália (em Crotona) fundando a chamada Escola Pitagórica, onde se estudava Matemática, Filosofia, Música e outras Ciências;
*
Foi Pitágoras o primeiro a elevar a ciência dos números e da geometria à categoria das artes maiores e a estabelecer o princípio de que uma proposição científica deve ser totalmente convincente, isto é, verdadeiramente demonstrada;
*
Atribuem-se notáveis descobertas a Pitágoras, tais como o sistema de numeração decimal, tabelas de multiplicação e a demonstração do célebre teorema que leva o seu nome;
*
Há uma lenda que conta que Pitágoras ofereceu aos deuses mil bois como agradecimento, por ter descoberto a demonstração do referido teorema;
*
Os Pitagóricos tinham algumas superstições e para prevenir desgraças usavam o símbolo «pentagrama», nas portas das casas e nos sítios que queriam preservar de maus acontecimentos;
*
Este teorema indica que os gregos conseguiram estabelecer uma ligação abstracta entre os números e as figuras, o que representa um importante esforço intelectual. Também prova que tinham aprendido a demonstrar, e não apenas a persuadir, o que representa um considerável salto cognitivo.
*
Existem inúmeras demonstrações do teorema de Pitágoras. Em 1940 o matemático americano Elisha Scott Loomis compilou 367 demonstrações diferentes para o seu livro 'The Pythagorean Proposition';
*
Abaixo estão alguns estratos de demonstrações para o teorema de Pitágoras, dadas ao longo do tempo:
Grego Latino Arábico
Grego, 800 E.C. Latino, 1120 E.C. Arábico, 1250 E.C.
Françês Inglês Chinês
Francês, 1564 E.C. Inglês, 1570 E.C. Chinês, 1607 E.C.
Assinar:
Postagens (Atom)